ON AN EIGENVALUE PROBLEM INVOLVING THE p(x)–LAPLACE OPERATOR PLUS A NON–LOCAL TERM

نویسندگان

  • MIHAI MIHĂILESCU
  • DENISA STANCU-DUMITRU
چکیده

We study an eigenvalue problem involving variable exponent growth conditions and a non-local term, on a bounded domain Ω ⊂ RN . Using adequate variational techniques, mainly based on the mountain-pass theorem of A. Ambrosetti and P. H. Rabinowitz, we prove the existence of a continuous family of eigenvalues lying in a neighborhood at the right of the origin. Mathematics subject classification (2000): 35D05, 35J60, 35J70, 58E05, 68T40, 76A02.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator

The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.

متن کامل

Spectrum consisting in a continuous family plus an isolated point for a Dirichlet type problem

Eigenvalue problems involving the Laplace operator on bounded domains lead to a discrete or a continuous set of eigenvalues. In this paper we highlight the case of an eigenvalue problem involving the Laplace operator which possesses, on the one hand, a continuous family of eigenvalues and, on the other hand, at least one more eigenvalue which is isolated in the set of eigenvalues of that proble...

متن کامل

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

Existence results of infinitely many solutions for a class of p(x)-biharmonic problems

The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.

متن کامل

A Mixed Basis Perturbation Approach to Approximate the Spectrum of Laplace Operator

This paper presents a mixed basis approach for Laplace eigenvalue problems, which treats the boundary as a perturbation of the free Laplace operator. The method separates the boundary from the volume via a generic function that can be pre-calculated and thereby effectively reduces the complexity of the problem to a calculation over the surface. Several eigenvalues are retrieved simultaneously. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009